
IEEE New Hampshire Section
Radar Systems Course   1
Waveforms & PC  1/1/2010 IEEE AES Society

Radar Systems Engineering 
Lecture 11 

Waveforms and Pulse Compression

Dr. Robert M. O’Donnell
IEEE New Hampshire Section

Guest Lecturer 



Radar Systems Course    2
Waveforms & PC  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Pulse
CompressionReceiver Clutter Rejection

(Doppler Filtering)
A / D

Converter

Block Diagram of Radar System

Antenna

Propagation
Medium

Target
Radar
Cross

Section

Transmitter

General Purpose Computer

Tracking

Data
Recording

Parameter
Estimation 

Waveform
Generation

Detection

Power
Amplifier

T / R
Switch

Signal Processor Computer

Thresholding

User Displays and Radar Control

Photo Image
Courtesy of US Air Force



Radar Systems Course    3
Waveforms & PC  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Outline

• Introduction to radar waveforms and their properties
– Matched filters

• Pulse Compression
– Introduction
– Linear frequency modulation (LFM) waveforms
– Phase coded (PC) waveforms
– Other coded waveforms

• Summary



Radar Systems Course    4
Waveforms & PC  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

CW Pulse, Its Frequency Spectrum, and 
Range Resolution

• Range Resolution  (     )
– Proportional to pulse width (    )
– Inversely proportional to bandwidth (              )

1 MHz  Bandwidth => 150 m of range resolution
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Outline

• Introduction to radar waveforms and their properties
– Matched filters

• Pulse Compression
– Introduction
– Linear frequency modulation (LFM) waveforms
– Phase coded (PC) waveforms
– Other waveforms

• Summary



Radar Systems Course    6
Waveforms & PC  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Matched Filter Concept

Matched
Filter
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• Matched Filter maximizes the peak-signal to mean noise ratio
– For rectangular pulse, matched filter is a simple pass band filter
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Matched Filter Basics

• One wants to pass the received radar echo through a filter, 
whose output will optimize the Signal-to-Noise Ratio (S/N)

• For white Gaussian noise, the frequency response,         , of 
the matched filter is

– The transmitted signal is

– And

• With a little manipulation:
– Amplitude and phase of Matched Filter are 

mtfj2e)f(SA)f(H π−∗=

)f(H

dte)t(s)f(S tfj2∫
∞

∞−

π−=

)t(s

Complex conjugate

mSMF tf2)f()f( π+φ−=φ)f(S)f(H =



Radar Systems Course    8
Waveforms & PC  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Matched Filter Basics (continued)

• In Chapter 5, Section 2, Skolnik (Reference 1) repeats the 
classic derivation for the matched filter frequency response 
for a simple pulse in Gaussian noise

– The interested student can read and follow it readily

• It states that the output peak instantaneous* signal to mean 
noise ratio depends only on ;

– The total energy of the received signal, and
– The noise power per unit bandwidth

N
E2

≤

* The Signal-to Noise ratio used in radar equation calculations is the 
average signal-to-noise, that differs from the above result by a factor 

of 2 (half of the above )



Radar Systems Course    9
Waveforms & PC  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Matched Filters – A Look Forward

• Note that the previous discussion always assumes that the 
signal only competes with uniform white Gaussian noise

• While for ~80% of a typical radar’s coverage this is true, the 
echoes from the various types of clutter, this is far from 
true

– Ground, rain, sea, birds, etc
– These different types of backgrounds that the target signal 

competes with have spectra that are very different from 
Gaussian noise  

• The optimum matched filters that need to be used to deal 
with clutter will be discussed in lectures 12 and 13
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• Matched filter is implemented by “convolving” the reflected 
echo with the “time reversed” transmit pulse

• Convolution process: 
– Move digitized pulses by  each other, in steps 
– When data overlaps, multiply samples and sum them up

Matched Filter Implementation 
by Convolution
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• Matched filter is implemented by “convolving” the reflected 
echo with the “time reversed” transmit pulse

• Convolution process: 
– Move digitized pulses by  each other, in steps 
– When data overlaps, multiply samples and sum them up

Implementation of Matched Filter
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Implementation of Matched Filter
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Implementation of Matched Filter
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Implementation of Matched Filter
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Implementation of Matched Filter
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Implementation of Matched Filter
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• Matched filter is implemented by “convolving” the reflected 
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– Move digitized pulses by  each other, in steps 
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Implementation of Matched Filter
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• Matched filter is implemented by “convolving” the reflected 
echo with the “time reversed” transmit pulse

• Convolution process: 
– Move digitized pulses by  each other, in steps 
– When data overlaps, multiply samples and sum them up
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Outline

• Introduction to radar waveforms and their properties
– Matched filters

• Pulse Compression
– Introduction
– Linear frequency modulation (LFM) waveforms
– Phase coded (PC) waveforms
– Other coded waveforms

• Summary
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Motivation for Pulse Compression

• High range resolution is important for most radars
– Target characterization / identification  
– Measurement accuracy

• High range resolution may be obtained with short pulses
– Bandwidth is inversely proportional to pulsewidth

• Limitations of short pulse radars
– High peak power is required for large pulse energy
– Arcing occurs at high peak power , especially at higher 

frequencies
 Example: Typical aircraft surveillance radar

 1 megawatt peak power, 1 microsecond pulse, 150 m range resolution, 
energy in 1 pulse  = 1 joule

 To obtain 15 cm resolution and constrain energy per pulse to 1 joule implies 1 
nanosecond pulse and 1 gigawatt of peak power

– Airborne radars experience breakdown at lower voltages than 
ground based radars
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Motivation for Pulse Compression

• Radars with solid state transmitters are unable to operate at 
high peak powers 

– The energy comes from long pulses with moderate peak 
power (20-25% maximum duty cycle)

– Usually, long pulses, using standard pulsed CW waveforms, 
result in relatively poor range resolution

• A long pulse can have the same bandwidth (resolution) as a 
short pulse if it is modulated in frequency or phase

• Pulse compression, using frequency or phase modulation, 
allows a radar to simultaneously achieve the energy of a 
long pulse and the resolution of a short pulse

• Two most important classes of pulse compression 
waveforms

– Linear frequency modulated (FM) pulses
– Binary phase coded pulses
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Pulse Width, Bandwidth and Resolution 
for a Square Pulse 

Cannot Resolve Features Along the Target

Can Resolve Features Along the Target

Pulse Length is Larger than Target Length

Pulse Length is Smaller than Target Length

Resolution:

Shorter Pulses have Higher Bandwidth and Better Resolution
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Frequency and Phase Modulation of Pulses 

• Resolution of a short pulse can be achieved by modulating 
a long pulse, increasing the time-bandwidth product

• Signal must be processed on return to “pulse compress”

Binary Phase
Coded Waveform

Linear Frequency
Modulated Waveform

Bandwidth = 1/τ

Pulse Width, T

Frequency F1 Frequency F2

Bandwidth = ΔF = F2 - F1

Square Pulse
Pulse Width, TPulse Width, T

τ

Bandwidth = 1/T

Time × Bandwidth = 1 Time × Bandwidth = T/τ Time × Bandwidth = TΔF

Viewgraph courtesy of MIT Lincoln Laboratory
Used with permission
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Outline

• Introduction to radar waveforms and their properties
– Matched filters

• Pulse Compression
– Introduction
– Linear frequency modulation (LFM) waveforms
– Phase coded (PC) waveforms
– Other coded waveforms

• Summary
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Linear FM Pulse Compression
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B= f1 – f2

Linear FM Pulse Compression
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Is the Received Waveform from a stationary 
target at range                           or from a moving 
target at                 , with Doppler frequency,  

Range Doppler Coupling with FM Waveforms

Range and Doppler measurements are coupled with 
Frequency modulated waveforms
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Linear FM Pulse Compression Filters

• Linear FM pulse compression filters are usually 
implemented digitally

– A / D converters can often provide the very wide bandwidths 
required of high resolution digital pulse compression radar

• Two classes of Linear FM waveforms
– Narrowband Pulse Compression
– High Bandwidth Pulse Compression (aka “Stretch 

Processing”)
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Linear FM Pulse Compression by Digital 
Processing

• Linear FM pulse compression waveforms can be processed 
and generated at low power levels by digital methods, when 
A / D converters are available with the required bandwidth 
and number of bits

• Digital methods are stable and can handle long duration 
waveforms

• The same basic digital implementation can be used with :
– multiple bandwidths
– multiple pulse durations
– different types of pulse compression modulation
– good phase repeatability
– low time sidelobes
– when flexibility is desired in waveform selection
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Implementation Methods for LFM Pulse 
Compression

• Direct Convolution in Time Domain

• Frequency Domain Implementation

Transmitted
(Reference)

Signal

Uncompressed
Received Echo 

Convolution Compressed
Pulse

Uncompressed 
Received Echo

Transmitted 
(Reference)

Signal

Discrete Fourier 
Transform

Inverse
Discrete Fourier 
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Discrete Fourier 
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Reduction of Time (Range) Sidelobes

• Optimum (matched filter) output has sin(x) / x form 
– 13.2 db time (range) sidelobe
– High sidelobes can be mistaken for weak nearby targets

• Potential solution - Amplitude taper on transmit
– Klystrons, TWTs and CFAs operate in saturation
– Solid state transmitters can, but most often don’t have this 

capability
 Higher efficiency
 Seldom done

• Time sidelobes of linear FM waveforms are usually reduced 
by applying an amplitude weighting on the receive pulse

– Typical Results
 Mismatch loss of about 1 dB
 Peak sidelobe reduced to 30 dB
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Narrowband Pulse Compression
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Wideband Stretch Processing - Overview

• In many cases involving high bandwidth radar systems, the 
instantaneous bandwidth of the linear FM waveform is 
greater than the sampling rates of available A/D converter 
technology

• In these cases, “Stretch Processing*”, can be employed to 
yield high range resolution (commensurate with that very 
high bandwidth) over a limited range window by processing 
the data in a manner that makes use of the unique range- 
Doppler coupling of linear FM waveforms

• This technique will be now described in more detail. 

*Note:   Dr. W. Caputi was awarded the IEEE Dennis Picard Medal in 2005 in recognition of his development of this 
technique and other significant achievements
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Stretch Processing Example
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Example of Stretch Processing 
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Example of Stretch Processing 
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Example of Stretch Processing 
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Example of Stretch Processing 
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Example of Stretch Processing 
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Example of Stretch Processing 
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Implementation of Stretch Processing
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Linear FM - Summary

• Waveform used most often for pulse compression

• Less complex than other methods
– Especially if stretch processing is not appropriate

• Weighting on receive usually required
– -13.2 dB to -30 dB sidelobes with 1 dB loss

• Range Doppler coupling
– Sometimes of little consequence
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Outline

• Introduction to radar waveforms and their properties
– Matched filters

• Pulse Compression
– Introduction
– Linear frequency modulation (LFM) waveforms
– Phase coded (PC) waveforms
– Other coded waveforms

• Summary
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Binary Phase Coded Waveforms

• Changes in phase can be used 
to increase the signal 
bandwidth of a long pulse 

• A pulse of duration T is divided 
into N sub-pulses of duration τ

• The phase of each sub-pulse is 
changed or not changed, 
according to a binary phase 
code

• Phase changes 0 or  π radians 
(+ or -) 

• Pulse compression filter output 
will be a compressed pulse of 
width τ

 

and a peak N times that 
of the uncompressed pulse

Binary Phase
Coded Waveform

Bandwidth = 1/τ

Pulse Width, T

τ

Pulse Compression Ratio = T/τ

Viewgraph courtesy of MIT Lincoln Laboratory
Used with permission
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Matched Filter - Binary Phase Coded Pulse

Example - 3 Bit Barker Code 
Seven Time Steps of Delay Line
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1

Example - 13 Bit Barker Code

A long pulse with 13 equal sub-pulses, whose individual phases are 
either 0 (+) or π (-) relative to the un-coded pulse

Auto-correlation function of above pulse, which represents the 
output of the matched filter

τ

T = 13 τ

13

- 13 τ                                           - τ τ

 

13 τ0

T

T T

Pulse Compression Ratio = 13
for 13 Bit Barker CodeSidelobe Level  -22.3 dB
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Tapped Delay Line

Generating the Barker Code of Length 13

τ

+
τ

+
τ

+
τ

+
τ

–
τ

–
τ

–
τ

–
τ

+
τ

+
τ

+
τ

++

∑

Tapped Delay Line
Input for

generation
of  13 bit 

Barker
coded 
signal

Matched
filter
input

Output waveform
With

13 bit Barker code= time between subpulses

T =  13    = total pulse length

τ

τ
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Barker Codes

Code Length Code Elements Sidelobe Level (dB)

2 + - , + + - 6.0

3 + + - - 9.5

4 + + - + , + + + - - 12.0

5 + + + - + - 14.0

7 + + + - - + - - 16.9

11 + + + - - - + - - + - - 20.8

13 + + + + + - - + + - + - + - 22.3
• The 0, and π

 

binary phase codes that result in equal time 
sidelobes are called Barker Codes

• Sidelobe level of Barker Code is 1 / N2 that of the peak 
power  ( N = code length)

• None greater than length 13
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Range Sidelobe Comparison

Binary Phase Coded Waveform
(7 bit Barker  code)

Output of Pulse Compression
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Outline

• Introduction to radar waveforms and their properties
– Matched filters

• Pulse Compression
– Introduction
– Linear frequency modulation (LFM) waveforms
– Phase coded (PC) waveforms
– Other coded waveforms

 Linear recursive sequences
 Quadriphase codes
 Polyphase codes
 Costas Codes

• Summary
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Linear Recursive Sequences 
(Shift Register Codes)

• Used for N >13
• Shift register with feedback & modulo 2 arithmetic which 

generates pseudo random sequence of 1s & 0s of length 2N-1
– N = number of stages in shift register
– Also called :

 Linear recursive sequence (code)
 Pseudo-random noise sequence (code)
 Pseudo-noise (PN) sequence (code)
 Binary shift register sequence (code)

• Different feedback paths and initial settings yield different 
different sequences with different sidelobe levels

• Example 7 bit shift register for generating a pseudo random 
linear recursive sequence, N = 127 and 24 dB sidelobes

Modulo 2
Adder

1       2       3       4       5        6       7
Output
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Quadriphase Codes

• Used to alleviate some of the problems of binary phase 
codes 

– Poor fall off of radiated pattern
– Mismatch loss in the receiver pulse compression filter
– Loss due to range sampling when pulse compression is 

digital
• Description of Quadriphase codes

– Obtained by operating on binary phase codes with an 
operator

– 0, π/2, π, or 3π/2
– Between subpulses the phase change is π/2
– Each subpulse has a 1/2 cosine shape 

 Rather than rectangular
– Range straddling losses are reduced
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Polyphase (Frank) Codes

• Phase quantization is less than π

 

radians
• Produces lower range sidelobes than binary phase coding
• Tolerant to Doppler frequency shifts

– If Doppler frequencies are not too large

0 0 0 0 . . .     0
0 1 2 3 . . .  (N-1)
0 2 4 6 . . . 2(N-1)
0 3 6 9 . . . 3(N-1)
.
.
0 (N-1). . .  (N-1)2

M x M Matrix Defining
Frank Polyphase Code

Example of Frank Matrix with M = 5
Pulse Compression Ratio N = M x M = 25

Peak sidelobe 23.9 dB
Basic phase increment  2π/5 = 72 degrees

0   0     0     0    0
0  72 144  216 288
0 144 288  72  216
0 216  72  288 144
0 288 216 144  72

The phases of each of the M2 subpulses are found by 
starting at the upper left of the matrix and reading each row 
in succession from left to right. Phases are modulo 360 
degrees
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Costas Codes

• Frequencies in the subpulse are changed in a prescribed 
manner

• A pulse of length T is divided into M contiguous subpulses
• The frequency of each subpulse is selected from M 

contiguous frequencies
• The frequencies are separated by the reciprocal of the 

subpulse, ΔB = M/T
– There are B / M different frequencies
– The width of each subpulse is T / M
– The pulse compression ratio is B T = M2

• Costas developed a method of selection which minimizes 
the range and Doppler sidelobe levels
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Other Coded Waveforms

• These are some of the other methods of phase and 
frequency coding radar waveforms. 

– They are covered in the text, and as expected, each have their 
strengths and shortfalls

• Other waveform codes
– Non-linear FM Pulse compression
– Non-linear binary phase coded sequences
– Doppler tolerant pulse compression waveforms
– Complementary (Golay) Codes
– Welti Codes
– Huffman Codes
– Variants of the Barker code
– Techniques for minimizing the sidelobes with phase coded 

waveforms
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Summary

• Simultaneous high average power and good range resolution 
may be achieved by using pulse compression techniques

• Modulation of long pulses, in frequency or phase, are 
techniques that are often for pulse compression

– Phase-encoding a long pulse can be used to divide it into binary 
encoded sub-pulses 

– Linear frequency modulation of a long pulse can also be used to 
achieve the same effect

• Other methods of pulse coding
– Linear recursive sequence codes
– Quadraphase codes
– Polyphase codes
– Costas codes
– Non-linear FM
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Homework Problems

• From Skolnik, Reference 1
– Problems 5-11 , 5-2, 5-3
– Problems 6-17, 6-19 , 6-20, 6-21, 6-22, 6-25, 6-26, 6-27, 6-28
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