

Radar Systems Engineering Lecture 11 Waveforms and Pulse Compression

Dr. Robert M. O'Donnell IEEE New Hampshire Section Guest Lecturer

IEEE New Hampshire Section

IEEE AES Society

EEE New Hampshire Section IEEE AES Society

Introduction to radar waveforms and their properties

- Matched filters
- Pulse Compression
 - Introduction
 - Linear frequency modulation (LFM) waveforms
 - Phase coded (PC) waveforms
 - Other coded waveforms
- Summary

CW Pulse, Its Frequency Spectrum, and Range Resolution

Viewgraph courtesy of MIT Lincoln Laboratory Used with permission

- Introduction to radar waveforms and their properties
 - Matched filters
- Pulse Compression
 - Introduction
 - Linear frequency modulation (LFM) waveforms
 - Phase coded (PC) waveforms
 - Other waveforms
- Summary

Used with permission

- One wants to pass the received radar echo through a filter, whose output will optimize the Signal-to-Noise Ratio (S/N)
- For white Gaussian noise, the frequency response, H(f), of the matched filter is _____Complex conjugate

$$\mathbf{H}(\mathbf{f}) = \mathbf{A} \mathbf{S}^*(\mathbf{f}) \mathbf{e}^{-2\pi \mathbf{j} \mathbf{f} \mathbf{t}_m}$$

- The transmitted signal is
$$s(t)$$

- And
$$S(f) = \int_{-\infty}^{\infty} s(t) e^{-2\pi j f t} dt$$

- With a little manipulation:
 - Amplitude and phase of Matched Filter are

$$|\mathbf{H}(\mathbf{f})| = |\mathbf{S}(\mathbf{f})|$$
 $\phi_{\mathrm{MF}}(\mathbf{f}) = -\phi_{\mathrm{S}}(\mathbf{f}) + 2\pi \mathbf{f} \mathbf{t}_{\mathrm{m}}$

IEEE New Hampshire Section IEEE AES Society

- In Chapter 5, Section 2, Skolnik (Reference 1) repeats the classic derivation for the matched filter frequency response for a simple pulse in Gaussian noise
 - The interested student can read and follow it readily
- It states that the output peak <u>instantaneous</u>* signal to mean noise ratio depends only on ;
 - The total energy of the received signal, and
 - The noise power per unit bandwidth

$$\leq \frac{2 \mathrm{E}}{\mathrm{N}}$$

* The Signal-to Noise ratio used in radar equation calculations is the <u>average</u> signal-to-noise, that differs from the above result by a factor of 2 (half of the above)

- Note that the previous discussion always assumes that the signal only competes with uniform white Gaussian noise
- While for ~80% of a typical radar's coverage this is true, the echoes from the various types of clutter, this is far from true
 - Ground, rain, sea, birds, etc
 - These different types of backgrounds that the target signal competes with have spectra that are very different from Gaussian noise
- The optimum matched filters that need to be used to deal with clutter will be discussed in lectures 12 and 13

Matched Filter Implementation by Convolution

- **Convolution process:**
 - Move digitized pulses by each other, in steps
 - When data overlaps, multiply samples and sum them up

- **Convolution process:**
 - Move digitized pulses by each other, in steps
 - When data overlaps, multiply samples and sum them up

- **Convolution process:**
 - Move digitized pulses by each other, in steps
 - When data overlaps, multiply samples and sum them up

- Move digitized pulses by each other, in steps
- When data overlaps, multiply samples and sum them up

- Move digitized pulses by each other, in steps
- When data overlaps, multiply samples and sum them up

- Move digitized pulses by each other, in steps
- When data overlaps, multiply samples and sum them up

Radar Systems Course 15 Waveforms & PC 1/1/2010

- Move digitized pulses by each other, in steps
- When data overlaps, multiply samples and sum them up

0

IEEE New Hampshire Section IEEE AES Society

Time

Radar Systems Course 17 Waveforms & PC 1/1/2010

Used with permission

Viewgraph courtesy of MIT Lincoln Laboratory

Use of Matched Filter Maximizes S/N

- Introduction to radar waveforms and their properties
 - Matched filters
- Pulse Compression
 - Introduction
 - Linear frequency modulation (LFM) waveforms
 - Phase coded (PC) waveforms
 - Other coded waveforms
- Summary

- High range resolution is important for most radars
 - Target characterization / identification
 - Measurement accuracy
- High range resolution may be obtained with short pulses
 - Bandwidth is inversely proportional to pulsewidth
- Limitations of short pulse radars
 - High peak power is required for large pulse energy
 - Arcing occurs at high peak power , especially at higher frequencies

Example: Typical aircraft surveillance radar

1 megawatt peak power, 1 microsecond pulse, 150 m range resolution, energy in 1 pulse = 1 joule

To obtain 15 cm resolution and constrain energy per pulse to 1 joule implies 1 nanosecond pulse and 1 gigawatt of peak power

 Airborne radars experience breakdown at lower voltages than ground based radars

- Radars with solid state transmitters are unable to operate at high peak powers
 - The energy comes from long pulses with moderate peak power (20-25% maximum duty cycle)
 - Usually, long pulses, using standard pulsed CW waveforms, result in relatively poor range resolution
- A long pulse can have the same bandwidth (resolution) as a short pulse if it is <u>modulated in frequency or phase</u>
- Pulse compression, using frequency or phase modulation, allows a radar to simultaneously achieve the energy of a long pulse and the resolution of a short pulse
- Two most important classes of pulse compression waveforms
 - Linear frequency modulated (FM) pulses
 - Binary phase coded pulses

Pulse Width, Bandwidth and Resolution for a Square Pulse

Resolution: Pulse Length is Larger than Target Length Cannot Resolve Features Along the Target

Relative Range (m)

Shorter Pulses have Higher Bandwidth and Better Resolution

Viewgraph courtesy of MIT Lincoln Laboratory Used with permission

Radar Systems Course 21 Waveforms & PC 1/1/2010 IEEE New Hampshire Section IEEE AES Society

Radar Systems Course 22 Waveforms & PC 1/1/2010

IEEE New Hampshire Section IEEE AES Society

Frequency and Phase Modulation of Pulses

- Resolution of a short pulse can be achieved by modulating a long pulse, increasing the time-bandwidth product
- Signal must be processed on return to "pulse compress"

- Introduction to radar waveforms and their properties
 - Matched filters
- Pulse Compression
 - Introduction
 - Linear frequency modulation (LFM) waveforms
 - Phase coded (PC) waveforms
 - Other coded waveforms
- Summary

IEEE New Hampshire Section IEEE AES Society

Viewgraph courtesy of MIT Lincoln Laboratory Used with permission

IEEE New Hampshire Section IEEE AES Society

Radar Systems Course 25 Waveforms & PC 1/1/2010

Range Doppler Coupling with FM Waveforms

Frequency vs. Time

Range and Doppler measurements are coupled with Frequency modulated waveforms

- Linear FM pulse compression filters are usually implemented digitally
 - A / D converters can often provide the very wide bandwidths required of high resolution digital pulse compression radar
- Two classes of Linear FM waveforms
 - Narrowband Pulse Compression
 - High Bandwidth Pulse Compression (aka "Stretch Processing")

Linear FM Pulse Compression by Digital Processing

- Linear FM pulse compression waveforms can be processed and generated at low power levels by digital methods, when A / D converters are available with the required bandwidth and number of bits
- Digital methods are stable and can handle long duration waveforms
- The same basic digital implementation can be used with :
 - multiple bandwidths
 - multiple pulse durations
 - different types of pulse compression modulation
 - good phase repeatability
 - low time sidelobes
 - when flexibility is desired in waveform selection

Implementation Methods for LFM Pulse Compression

• Direct Convolution in Time Domain

• Frequency Domain Implementation

- Optimum (matched filter) output has sin(x) / x form
 - 13.2 db time (range) sidelobe
 - High sidelobes can be mistaken for weak nearby targets
- Potential solution Amplitude taper on transmit
 - Klystrons, TWTs and CFAs operate in saturation
 - Solid state transmitters can, but most often don't have this capability
 - **Higher efficiency**
 - Seldom done
- Time sidelobes of linear FM waveforms are usually reduced by applying an amplitude weighting on the receive pulse
 - Typical Results

Mismatch loss of about 1 dB Peak sidelobe reduced to 30 dB

- Used for NB waveforms
 - Receive LFM wide pulse
 - Wide pulsewidth for good detection
 - Process signal to narrow band pulse range resolution

- In many cases involving high bandwidth radar systems, the instantaneous bandwidth of the linear FM waveform is greater than the sampling rates of available A/D converter technology
- In these cases, "Stretch Processing*", can be employed to yield high range resolution (commensurate with that very high bandwidth) over a limited range window by processing the data in a manner that makes use of the unique range-Doppler coupling of linear FM waveforms
- This technique will be now described in more detail.

*Note: Dr. W. Caputi was awarded the IEEE Dennis Picard Medal in 2005 in recognition of his development of this technique and other significant achievements

IEEE New Hampshire Section IEEE AES Society

IEEE AES Society

IEEE AES Society

The separation in distance of the two targets corresponds to a time delay through $\Delta \mathbf{R} = c \Delta t / 2$ The relative time delay is related to is related to the above target frequencies through the slope of the FM waveform

The separation in distance of the two targets corresponds to a time delay through $\Delta \mathbf{R} = c \Delta t / 2$ The relative time delay is related to is related to the above target frequencies through the slope of the FM waveform

- Used for all wide bandwidth waveforms
 - Receive waveform mixed with similar reference waveform prior to A/D conversion
 - Frequency representation of resulting sinusoids translates into range of targets

- Waveform used most often for pulse compression
- Less complex than other methods
 - Especially if stretch processing is not appropriate
- Weighting on receive usually required
 - -13.2 dB to -30 dB sidelobes with 1 dB loss
- Range Doppler coupling
 - Sometimes of little consequence

- Introduction to radar waveforms and their properties
 - Matched filters
- Pulse Compression
 - Introduction
 - Linear frequency modulation (LFM) waveforms
- Phase coded (PC) waveforms
 - Other coded waveforms
- Summary

Bandwidth = $1/\tau$

Pulse Compression Ratio = T/τ

- Changes in phase can be used to increase the signal bandwidth of a long pulse
- A pulse of duration T is divided into N sub-pulses of duration τ
- The phase of each sub-pulse is changed or not changed, according to a binary phase code
- Phase changes 0 or π radians (+ or -)
- Pulse compression filter output will be a compressed pulse of width τ and a peak N times that of the uncompressed pulse

Viewgraph courtesy of MIT Lincoln Laboratory Used with permission

Matched Filter - Binary Phase Coded Pulse

A long pulse with 13 equal sub-pulses, whose individual phases are either 0 (+) or π (-) relative to the un-coded pulse

Generating the Barker Code of Length 13

Barker Codes

Code Length	Code Elements	<u>Sidelobe Level (dB)</u>
2	+-,++	- 6.0
3	+ + -	- 9.5
4	+ + - + , + + + -	- 12.0
5	+ + + - +	- 14.0
7	+ + + + -	- 16.9
11	+ + + + - + -	- 20.8
13	+ + + + + + + - + - 4	- 22.3

- The 0, and π binary phase codes that result in equal time sidelobes are called Barker Codes
- Sidelobe level of Barker Code is 1 / N² that of the peak power (N = code length)
- None greater than length 13

IEEE New Hampshire Section IEEE AES Society

Waveforms & PC 1/1/2010

- Introduction to radar waveforms and their properties
 - Matched filters
- Pulse Compression
 - Introduction
 - Linear frequency modulation (LFM) waveforms
 - Phase coded (PC) waveforms
- → Other coded waveforms
 - Linear recursive sequences
 - Quadriphase codes
 - Polyphase codes
 - Costas Codes
- Summary

- Used for N >13
- Shift register with feedback & modulo 2 arithmetic which generates pseudo random sequence of 1s & 0s of length 2^N-1
 - N = number of stages in shift register
 - Also called :

Linear recursive sequence (code) Pseudo-random noise sequence (code) Pseudo-noise (PN) sequence (code) Binary shift register sequence (code)

- Different feedback paths and initial settings yield different different sequences with different sidelobe levels
- Example 7 bit shift register for generating a pseudo random linear recursive sequence, N = 127 and 24 dB sidelobes

- Used to alleviate some of the problems of binary phase codes
 - Poor fall off of radiated pattern
 - Mismatch loss in the receiver pulse compression filter
 - Loss due to range sampling when pulse compression is digital
- Description of Quadriphase codes
 - Obtained by operating on binary phase codes with an operator
 - **0**, π/2, π, or 3π/2
 - Between subpulses the phase change is $\pi/2$
 - Each subpulse has a 1/2 cosine shape Rather than rectangular
 - Range straddling losses are reduced

- Phase quantization is less than π radians
- Produces lower range sidelobes than binary phase coding
- Tolerant to Doppler frequency shifts
 - If Doppler frequencies are not too large

0 2 4 6 . . . 2(N-1)0 144 288 72 2160 3 6 9 . . . 3(N-1)0 216 72 288 1440 288 216 144 72

. 0 (N-1). . . (N-1)² The phases of each of the M² subpulses are found by starting at the upper left of the matrix and reading each row in succession from left to right. Phases are modulo 360 degrees

- Frequencies in the subpulse are changed in a prescribed manner
- A pulse of length T is divided into M contiguous subpulses
- The frequency of each subpulse is selected from M contiguous frequencies
- The frequencies are separated by the reciprocal of the subpulse, ∆B = M/T
 - There are B / M different frequencies
 - The width of each subpulse is T / M
 - The pulse compression ratio is B T = M²
- Costas developed a method of selection which minimizes the range and Doppler sidelobe levels

- These are some of the other methods of phase and frequency coding radar waveforms.
 - They are covered in the text, and as expected, each have their strengths and shortfalls
- Other waveform codes
 - Non-linear FM Pulse compression
 - Non-linear binary phase coded sequences
 - Doppler tolerant pulse compression waveforms
 - Complementary (Golay) Codes
 - Welti Codes
 - Huffman Codes
 - Variants of the Barker code
 - Techniques for minimizing the sidelobes with phase coded waveforms

- Simultaneous high average power and good range resolution may be achieved by using pulse compression techniques
- Modulation of long pulses, in frequency or phase, are techniques that are often for pulse compression
 - Phase-encoding a long pulse can be used to divide it into binary encoded sub-pulses
 - Linear frequency modulation of a long pulse can also be used to achieve the same effect
- Other methods of pulse coding
 - Linear recursive sequence codes
 - Quadraphase codes
 - Polyphase codes
 - Costas codes
 - Non-linear FM

- 1. Skolnik, M., Introduction to Radar Systems, McGraw-Hill, New York, 3rd Ed., 2001
- 2. Barton, D. K., *Modern Radar System Analysis*, Norwood, Mass., Artech House, 1988
- 3. Skolnik, M., Editor in Chief, *Radar Handbook*, New York, McGraw-Hill, 3rd Ed., 2008
- 4. Skolnik, M., Editor in Chief, *Radar Handbook*, New York, McGraw-Hill, 2nd Ed., 1990
- 5. Nathanson, F. E., *Radar Design Principles*, New York, McGraw-Hill, 1st Ed., 1969
- 6. Richards, M., *Fundamentals of Radar Signal Processing,* McGraw-Hill, New York, 2005
- 7. Sullivan, R. J., *Radar Foundations for Imaging and Advanced Concepts*, Scitech, Raleigh, 2000

• Dr. Randy Avent

IEEE New Hampshire Section IEEE AES Society

- From Skolnik, Reference 1
 - Problems 5-11 , 5-2, 5-3
 - Problems 6-17, 6-19, 6-20, 6-21, 6-22, 6-25, 6-26, 6-27, 6-28